Medine.co.uk

Out of date information, search another

Risperidone 0.5 Mg Film Coated Tablets

Out of date information, search another
Informations for option: Risperidone 0.5 Mg Film Coated Tablets, show other option
Document: document 3 change

SUMMARY OF PRODUCT CHARACTERISTICS

1 NAME OF THE MEDICINAL PRODUCT

Risperidone 0.5 mg film-coated tablets

2    QUALITATIVE AND QUANTITATIVE COMPOSITION

Each film-coated tablet contains 0.5 mg risperidone.

Excipient with known effect: Each 0.5 mg film-coated tablet contains 59.50 mg lactose monohydrate.

For the full list of excipients, see section 6.1.

3    PHARMACEUTICAL FORM

Film-coated tablet.

0.5 mg film-coated tablets are green, biconvex, capsule-shaped tablets inscribed with ‘A’ on one side and ‘50’ on the other side. Scored between ‘5’ and ‘0’. The tablet can be divided into equal doses.

4    CLINICAL PARTICULARS

4.1    Therapeutic indications

Risperidone is indicated for the treatment of schizophrenia.

Risperidone is indicated for the treatment of moderate to severe manic episodes associated with bipolar disorders.

Risperidone is indicated for the short-term treatment (up to 6 weeks) of persistent aggression in patients with moderate to severe Alzheimer’s dementia unresponsive to non-pharmacological approaches and when there is a risk of harm to self or others.

Risperidone is indicated for the short-term symptomatic treatment (up to 6 weeks) of persistent aggression in conduct disorder in children from the age of 5 years and adolescents with subaverage intellectual functioning or mental retardation diagnosed according to DSM-IV criteria, in whom the severity of aggressive or other disruptive behaviours require pharmacologic treatment. Pharmacological treatment should be an integral part of a more comprehensive treatment programme, including psychosocial and educational intervention. It is recommended that risperidone be prescribed by a specialist in child neurology and child and adolescent psychiatry or physicians well familiar with the treatment of conduct disorder of children and adolescents.

4.2 Posology and method of administration

Schizophrenia

Adults

Risperidone may be given once daily or twice daily.

Patients should start with 2 mg/day risperidone. The dosage may be increased on the second day to 4 mg. Subsequently, the dosage can be maintained unchanged, or further individualised, if needed. Most patients will benefit from daily doses between 4 and 6 mg. In some patients, a slower titration phase and a lower starting and maintenance dose may be appropriate.

Doses above 10 mg/day have not demonstrated superior efficacy to lower doses and may cause increased incidence of extrapyramidal symptoms. Safety of doses above 16 mg/day has not been evaluated, and are therefore not recommended.

Elderly

A starting dose of 0.5 mg twice daily is recommended. This dosage can be individually adjusted with 0.5 mg twice daily increments to 1 to 2 mg twice daily.

Paediatric population

Risperidone is not recommended for use in children below age 18 with schizophrenia due to a lack of data on efficacy.

Manic episodes in bipolar disorder

Adults

Risperidone should be administered on a once daily schedule, starting with 2 mg risperidone. Dosage adjustments, if indicated, should occur at intervals of not less than 24 hours and in dosage increments of 1 mg per day. Risperidone can be administered in flexible doses over a range of 1 to 6 mg per day to optimize each patient’s level of efficacy and tolerability. Daily doses over 6 mg risperidone have not been investigated in patients with manic episodes.

As with all symptomatic treatments, the continued use of Risperidone must be evaluated and justified on an ongoing basis.

Elderly

A starting dose of 0.5 mg twice daily is recommended. This dosage can be individually adjusted with 0.5 mg twice daily increments to 1 to 2 mg twice daily. Since clinical experience in elderly is limited, caution should be exercised.

Paediatric population

Risperidone is not recommended for use in children below age 18 with bipolar mania due to a lack of data on efficacy.

Persistent aggression in patients with moderate to severe Alzheimer’s dementia

A starting dose of 0.25 mg twice daily is recommended. This dosage can be individually adjusted by increments of 0.25 mg twice daily, not more frequently than every other day, if needed. The optimum dose is 0.5 mg twice daily for most patients. Some patients, however, may benefit from doses up to 1 mg twice daily.

Risperidone should not be used more than 6 weeks in patients with persistent aggression in Alzheimer’s dementia. During treatment, patients must be evaluated frequently and regularly, and the need for continuing treatment reassessed.

Conduct disorder

Children and adolescents from 5 to 18 years of age

For subjects >50 kg, a starting dose of 0.5 mg once daily is recommended. This dosage can be individually adjusted by increments of 0.5 mg once daily not more frequently than every other day, if needed. The optimum dose is 1 mg once daily for most patients. Some patients, however, may benefit from 0.5 mg once daily while others may require 1.5 mg once daily. For subjects <50 kg, a starting dose of 0.25 mg once daily is recommended. This dosage can be individually adjusted by increments of 0.25 mg once daily not more frequently than every other day, if needed. The optimum dose is 0.5 mg once daily for most patients. Some patients, however, may benefit from 0.25 mg once daily while others may require 0.75 mg once daily.

As with all symptomatic treatments, the continued use of Risperidone must be evaluated and justified on an ongoing basis.

Risperidone is not recommended in children less than 5 years of age, as there is no experience in children less than 5 years of age with this disorder.

Renal and hepatic impairment

Patients with renal impairment have less ability to eliminate the active antipsychotic fraction than in adults with normal renal function. Patients with impaired hepatic function have increases in plasma concentration of the free fraction of risperidone.

Irrespective of the indication, starting and consecutive dosing should be halved, and dose titration should be slower for patients with renal or hepatic impairment.

Risperidone should be used with caution in these groups of patients.

Method of administration

Risperidone is for oral use. Food does not affect the absorption of Risperidone. Upon discontinuation, gradual withdrawal is advised. Acute withdrawal symptoms, including nausea, vomiting, sweating, and insomnia have very rarely been described after abrupt cessation of high doses of antipsychotic medicines (see section 4.8). Recurrence of psychotic symptoms may also occur, and the emergence of involuntary movement disorders (such as akathisia, dystonia and dyskinesia) has been reported.

Switching from other antipsychotics.

When medically appropriate, gradual discontinuation of the previous treatment while Risperidone therapy is initiated is recommended. Also, if medically appropriate, when switching patients from depot antipsychotics, initiate Risperidone therapy in place of the next scheduled injection. The need for continuing existing anti-Parkinson medicines should be re-evaluated periodically.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

4.4 Special warnings and precautions for use

Elderly patients with dementia

Increased mortality in elderly people with dementia

In a meta-analysis of 17 controlled trials of atypical antipsychotic drugs, including risperidone, elderly patients with dementia treated with atypical antipsychotics have an increased mortality compared to placebo. In placebo-controlled trials with risperidone in this population, the incidence of mortality was 4.0% for risperidone-treated patients compared to 3.1% for placebo-treated patients. The odds ratio (95% exact confidence interval) was 1.21 (0.7, 2.1). The mean age (range) of patients who died was 86 years (range 67-100). Data from two large observational studies showed that elderly people with dementia who are treated with conventional antipsychotics are also at a small increased risk of death compared with those who are not treated. There are insufficient data to give a firm estimate of the precise magnitude of the risk and the cause of the increased risk is not known. The extent to which the findings of increased mortality in observational studies may be attributed to the antipsychotic drug as opposed to some characteristic(s) of the patients is not clear.

Concomitant use with _ furosemide

In the risperidone placebo-controlled trials in elderly patients with dementia, a higher incidence of mortality was observed in patients treated with furosemide plus risperidone (7.3%; mean age 89 years, range 75-97) when compared to patients treated with risperidone alone (3.1%; mean age 84 years, range 70-96) or furosemide alone (4.1%; mean age 80 years, range 67-90). The increase in mortality in patients treated with furosemide plus risperidone was observed in two of the four clinical trials. Concomitant use of risperidone with other diuretics (mainly thiazide diuretics used in low dose) was not associated with similar findings.

No pathophysiological mechanism has been identified to explain this finding, and no consistent pattern for cause of death observed. Nevertheless, caution should be exercised and the risks and benefits of this combination or cotreatment with other potent diuretics should be considered prior to the decision to use. There was no increased incidence of mortality among patients taking other diuretics as concomitant treatment with risperidone. Irrespective of treatment, dehydration was an overall risk factor for mortality and should therefore be carefully avoided in elderly patients with dementia.

Cerebrovascular Adverse Events (CVAE)

An approximately 3-fold increased risk of cerebrovascular adverse events have been seen in randomised placebo controlled clinical trials in the dementia population with some atypical antipsychotics.The pooled data from six placebo-controlled studies with risperidone in mainly elderly patients (>65 years of age) with dementia showed that CVAEs (serious and non-serious, combined) occurred in 3.3% (33/1009) of patients treated with risperidone and 1.2% (8/712) of patients treated with placebo. The odds ratio (95% exact confidence interval) was 2.96 (1.34, 7.50). The mechanism for this increased risk is not known. An increased risk cannot be excluded for other antipsychotics or other patient populations. Risperidone should be used with caution in patients with risk factors for stroke.

The risk of CVAEs was significantly higher in patients with mixed or vascular type of dementia when compared to Alzheimer’s dementia. Therefore, patients with other types of dementias than Alzheimer’s should not be treated with risperidone.

Physicians are advised to assess the risks and benefits of the use of Risperidone in elderly patients with dementia, taking into account risk predictors for stroke in the individual patient. Patients/caregivers should be cautioned to immediately report signs and symptoms of potential CVAEs such as sudden weakness or numbness in the face, arms or legs, and speech or vision problems. All treatment options should be considered without delay, including discontinuation of risperidone.

Risperidone should only be used short term for persistent aggression in patients with moderate to severe Alzheimer’s dementia to supplement nonpharmacological approaches which have had limited or no efficacy and when there is potential risk of harm to self or others.

Patients should be reassessed regularly, and the need for continuing treatment reassessed.

Orthostatic hypotension

Due to the alpha-blocking activity of risperidone, (orthostatic) hypotension can occur, especially during the initial dose-titration period. Clinically significant hypotension has been observed postmarketing with concomitant use of risperidone and antihypertensive treatment. Risperidone should be used with caution in patients with known cardiovascular disease (e.g., heart failure, myocardial infarction, conduction abnormalities, dehydration, hypovolemia, or cerebrovascular disease), and the dosage should be gradually titrated as recommended (see section 4.2). A dose reduction should be considered if hypotension occurs.

Leukopenia, neutropenia, and agranulocytosis

Events of leucopenia, neutropenia and agranulocytosis have been reported with antipsychotic agents, including risperidone. Agranulocytosis has been reported very rarely (< 1/10,000 patients) during post-marketing surveillance. Patients with a history of a clinically significant low white blood cell count (WBC) or a drug-induced leukopenia/neutropenia should be monitored during the first few months of therapy and discontinuation of risperidone should be considered at the first sign of a clinically significant decline in WBC in the absence of other causative factors.

Patients with clinically significant neutropenia should be carefully monitored for fever or other symptoms or signs of infection and treated promptly if such symptoms or signs occur. Patients with severe neutropenia (absolute neutrophil count < 1 X 109/L) should discontinue risperidone and have their WBC followed until recovery.

Tardive dyskinesia/extrapyramidal symptoms (TD/EPS)

Medicines with dopamine receptor antagonistic properties have been associated with the induction of tardive dyskinesia characterised by rhythmical involuntary movements, predominantly of the tongue and/or face. The onset of extrapyramidal symptoms is a risk factor for tardive dyskinesia. If signs and symptoms of tardive dyskinesia appear, the discontinuation of all antipsychotics should be considered.

Neuroleptic malignant syndrome (NMS)

Neuroleptic Malignant Syndrome, characterised by hyperthermia, muscle rigidity, autonomic instability, altered consciousness and elevated serum creatine phosphokinase levels has been reported to occur with antipsychotics. Additional signs may include myoglobinuria (rhabdomyolysis) and acute renal failure. In this event, all antipsychotics, including Risperidone, should be discontinued.

Parkinson’s disease and dementia with Lewy bodies

Physicians should weigh the risks versus the benefits when prescribing antipsychotics, including Risperidone, to patients with Parkinson’s Disease or Dementia with Lewy Bodies (DLB). Parkinson’s Disease may worsen with risperidone. Both groups may be at increased risk of Neuroleptic Malignant Syndrome as well as having an increased sensitivity to antipsychotic medicinal products; these patients were excluded from clinical trials. Manifestation of this increased sensitivity can include confusion, obtundation, postural instability with frequent falls, in addition to extrapyramidal symptoms.

Hyperglycemia and diabetes mellitus

Hyperglycaemia, diabetes mellitus and exacerbation of pre-existing diabetes have been reported during treatment with risperidone. In some cases, a prior increase in body weight has been reported which may be a predisposing factor. Association with ketoacidosis has been reported very rarely, and rarely with diabetic coma. Appropriate clinical monitoring is advisable in accordance with utilised antipsychotic guidelines. Patients treated with any atypical antipsychotic, including risperidone should be monitored for symptoms of hyperglycaemia (such as polydipsia, polyuria, polyphagia and weakness) and patients with diabetes mellitus should be monitored regularly for worsening of glucose control.

Weight gain

Significant weight gain has been reported with risperidone use. Weight should be monitored regularly.

Hyperprolactinaemia

Tissue culture studies suggest that cell growth in human breast tumours may be stimulated by prolactin. Although no clear association with the administration of antipsychotics has so far been demonstrated in clinical and epidemiological studies, caution is recommended in patients with relevant medical history. Risperidone should be used with caution in patients with preexisting hyperprolactinaemia and in patients with possible prolactin-dependent tumours.

QT prolongation

QT prolongation has very rarely been reported postmarketing. As with other antipsychotics, caution should be exercised when risperidone is prescribed in patients with known cardiovascular disease, family history of QT prolongation, bradycardia, or electrolyte disturbances (hypokalaemia, hypomagnesaemia), as it may increase the risk of arrhythmogenic effects, and in concomitant use with medicines known to prolong the QT interval.

Seizures

Risperidone should be used cautiously in patients with a history of seizures or other conditions that potentially lower the seizure threshold.

Priapism

Priapism may occur with Risperidone treatment due to its alpha-adrenergic blocking effects.

Body temperature regulation

Disruption of the body’s ability to reduce core body temperature has been attributed to antipsychotic medicines. Appropriate care is advised when prescribing Risperidone to patients who will be experiencing conditions which may contribute to an elevation in core body temperature, e.g., exercising

strenuously, exposure to extreme heat, receiving concomitant treatment with anticholinergic activity, or being subject to dehydration.

Antiemetic effect

An antiemetic effect was observed in preclinical studies with risperidone. This effect, if it occurs in humans, may mask the signs and symptoms of overdosage with certain medicines or of conditions such as intestinal obstruction, Reye's syndrome, and brain tumour.

Renal and hepatic impairment

Patients with renal impairment have less ability to eliminate the active antipsychotic fraction than adults with normal renal function. Patients with impaired hepatic function have increases in plasma concentration of the free fraction of risperidone (see section 4.2).

Venous thromboembolism (VTE)

Cases of venous thromboembolism (VTE) have been reported with antipsychotic drugs. Since patients treated with antipsychotics often present with acquired risk factors for VTE, all possible risk factors for VTE should be identified before and during treatment with Risperidone and preventive measures undertaken.

Intraoperative Floppy Iris Syndrome

Intraoperative Floppy Iris Syndrome (IFIS) has been observed during cataract surgery in patients treated with medicines with alpha1a-adrenergic antagonist effect, including risperidone (see Section 4.8). IFIS may increase the risk of eye complications during and after the operation. Current or past use of medicines with alpha1a-adrenergic antagonist effect should be made known to the ophthalmic surgeon in advance of surgery. The potential benefit of stopping alpha1 blocking therapy prior to cataract surgery has not been established and must be weighed against the risk of stopping the antipsychotic therapy.

Children and adolescents

Before risperidone is prescribed to a child or adolescent with conduct disorder they should be fully assessed for physical and social causes of the aggressive behaviour such as pain or inappropriate environmental demands.

The sedative effect of risperidone should be closely monitored in this population because of possible consequences on learning ability. A change in the time of administration of risperidone could improve the impact of the sedation on attention faculties of children and adolescents.

Risperidone was associated with mean increases in body weight and body mass index (BMI). Baseline weight measurement prior to treatment and regular weight monitoring are recommended. Changes in height in the longterm open-label extension studies were within expected age-appropriate norms. The effect of long-term risperidone treatment on sexual maturation and height have not been adequately studied.

Because of the potential effects of prolonged hyperprolactinemia on growth and sexual maturation in children and adolescents, regular clinical evaluation of endocrinological status should be considered, including measurements of height, weight, sexual maturation, monitoring of menstrual functioning, and other potential prolactin-related effects.

During treatment with risperidone regular examination for extrapyramidal symptoms and other movement disorders should also be conducted.

For specific posology recommendations in children and adolescents see Section 4.2.

Excipients

The film-coated tablets contain lactose. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.

4.5 Interaction with other medicinal products and other forms of interaction

As with other antipsychotics, caution is advised when prescribing risperidone with medicinal products known to prolong the QT interval, e.g., class Ia antiarrhythmics (e.g., quinidine, dysopiramide, procainamide), class III antiarrhythmics (e.g., amiodarone, sotalol), tricyclic antidepressants (i.e., amitriptyline), tetracyclic antidepressants (i.e., maprotiline),    some

antihistaminics, other antipsychotics, some antimalarials (i.e., chinice and mefloquine), and with medicines causing electrolyte imbalance (hypokalaemia, hypomagnesiaemia), bradycardia, or those which inhibit the hepatic metabolism of risperidone. This list is indicative and not exhaustive. Potential for Risperidone to affect other medicinal products Risperidone should be used with caution in combination with other centrally-acting substances notably including alcohol, opiates, antihistamines and benzodiazepines due to the increased risk of sedation.

Risperidone may antagonise the effect of levodopa and other dopamine agonists. If this combination is deemed necessary, particularly in end-stage Parkinson’s disease, the lowest effective dose of each treatment should be prescribed.

Clinically significant hypotension has been observed postmarketing with concomitant use of risperidone and antihypertensive treatment.

Risperidone does not show a clinically relevant effect on the pharmacokinetics of lithium, valproate, digoxin or topiramate.

Potential for other medicinal products to affect Risperidone

Carbamazepine has been shown to decrease the plasma concentrations of the active antipsychotic fraction of risperidone. Similar effects may be observed with e.g. rifampicin, phenytoin and phenobarbital which also induce CYP 3A4 hepatic enzyme as well as P-glycoprotein. When carbamazepine or other CYP 3A4 hepatic enzyme/P-glycoprotein (P-gp) inducers are initiated or discontinued, the physician should re-evaluate the dosing of Risperidone.

Fluoxetine and paroxetine, CYP 2D6 inhibitors, increase the plasma concentration of risperidone, but less so of the active antipsychotic fraction. It is expected that other CYP 2D6 inhibitors, such as quinidine, may affect the plasma concentrations of risperidone in a similar way. When concomitant fluoxetine or paroxetine is initiated or discontinued, the physician should reevaluate the dosing of Risperidone.

Verapamil, an inhibitor of CYP 3A4 and P-gp, increases the plasma concentration of risperidone.

Galantamine and donepezil do not show a clinically relevant effect on the pharmacokinetics of risperidone and on the active antipsychotic fraction. Phenothiazines, tricyclic antidepressants, and some beta-blockers may increase the plasma concentrations of risperidone but not those of the active antipsychotic fraction. Amitriptyline does not affect the pharmacokinetics of risperidone or the active antipsychotic fraction. Cimetidine and ranitidine increase the bioavailability of risperidone, but only marginally that of the active antipsychotic fraction. Erythromycin, a CYP 3A4 inhibitor, does not change the pharmacokinetics of risperidone and the active antipsychotic fraction.

The combined use of psychostimulants (e.g., methylphenidate) with Risperidone in children and adolescents did not alter the pharmacokinetics and efficacy of Risperidone.

See section 4.4 regarding increased mortality in elderly patients with dementia concomitantly receiving furosemide.

Concomitant use of oral Risperidone with paliperidone is not recommended as paliperidone is the active metabolite of risperidone and the combination of the two may lead to additive active antipsychotic fraction exposure.

Paediatric population

Interaction studies have only been performed in adults.

4.6 Fertility,pregnancy and lactation

Pregnancy

There are no adequate data from the use of risperidone in pregnant women. Risperidone was not teratogenic in animal studies but other types of reproductive toxicity were seen (see section 5.3).The potential risk for humans is unknown.

Neonates exposed to antipsychotics (including risperidone) during the third trimester of pregnancy are at risk of adverse reactions including extrapyramidal and/or withdrawal symptoms that may vary in severity and duration following delivery. There have been reports of agitation, hypertonia, hypotonia, tremor, somnolence, respiratory distress, or feeding disorder. Consequently, newborns should be monitored carefully. Therefore,

Risperidone should not be used during pregnancy unless clearly necessary. If discontinuation during pregnancy is necessary, it should not be done abruptly.

Lactation

In animal studies, risperidone and 9-hydroxy-risperidone are excreted in the milk. It has been demonstrated that risperidone and 9-hydroxy-risperidone are also excreted in human breast milk in small quantities. There are no data available on adverse reactions in breast-feeding infants. Therefore, the advantage of breastfeeding should be weighed against the potential risks for the child.

Fertility

As with other drugs that antagonize dopamine D2 receptors, risperidone elevates prolactin level. Hyperprolactinemia may suppress hypothalamic GnRH, resulting in reduced pituitary gonadotropin secretion. This, in turn, may inhibit reproductive function by impairing gonadal steroidogenesis in both female and male patients. There were no relevant effects observed in the non-clinical studies.

4.7 Effects on ability to drive and use machines

Risperidone can have minor or moderate influence on the ability to drive and use machines due to potential nervous system and visual effects (see section 4.8). Therefore, patients should be advised not to drive or operate machinery until their individual susceptibility is known.

4.8 Undesirable effects

The most frequently reported adverse drug reactions (ADRs) (incidence >10%) are: Parkinsonism, headache, and insomnia.

The ADRs that appeared to be dose-related included parkinsonism and akathisia.

The following are all the ADRs that were reported in clinical trials and postmarketing experience with risperidone by frequency category estimated from risperidone clinical trials.. The following terms and frequencies are applied: very common (>1/10), common (>1/100 to <1/10), uncommon (>1/1000 to <1/100), rare (>1/10,000 to <1/1000), very rare (<1/10,000), and not known (cannot be estimated from the available clinical trial data).

Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

Adverse Drug Reactions by System Organ Class and Frequency

System

Organ

Class

Adverse Drug Reaction

Frequency

Very

Common

Common

Uncommon

Rare

Very Rare

Infections

and

infestations

pneumonia,

bronchitis,

upper

respiratory

tract

infection, sinusitis, urinary tract infection, ear infection, influenza

respiratory tract infection, cystitis, eye

infection,

tonsillitis,

onychomycosis,

cellulitis localised

infection, viral

infection,

acarodermatitis

infection

Blood and lymphatic system disorders

neutropenia, white

blood cell count

decreased,

thrombocytopenia,

anaemia,

haematocrit

decreased,

eosinophil count

increased

agranulocytosi

sc

Immune

system

disorders

hypersensitivity

anaphylactic

reactionc

Endocrine

disorders

hyperprolacti

naemiaa

inappropriate

antidiuretic

hormone

secretion,

glucose urine

present

Metabolism

and

nutrition

disorders

weight

increased,

increased

appetite,

decreased

appetite

diabetes mellitus b,

hyperglycaemia,

polydipsia, weight

decreased,

anorexia,

blood cholesterol

increased

water

intoxicationc,

hypoglycemia,

hyperinsulinae

miac,

blood

triglycerides

increased

diabetic

ketoacidosi

s

Psychiatric

disorders

insomniad

sleep

disorder,

agitation,

depression,

anxiety

mania, confusional state, libido decreased, nervousness, nightmare

blunted affect, anorgasmia

Nervous

system

disorders

sedation/

somnolen

ce,

parkinsoni sm d, headache

akathisiad,

dystoniad,

dizziness,

dyskinesiad,

tremor

tardive dyskinesia, cerebral ischaemia, unresponsive to stimuli, loss of consciousness, depressed level of

neuroleptic

malignant

syndrome,

cerebrovascula

r

disorder,

consciousness,

convulsion1,

syncope,

psychomotor

hyperactivity,

balance disorder,

coordination

abnormal,

dizziness

postural,

disturbance

in attention,

dysarthria,

dysgeusia,

hypoaesthesia,

paraesthesia

diabetic coma, head titubation

Eye disorders

vision

blurred,

conjunctivitis

photophobia, dry eye, lacrimation increased, ocular hyperaemia

glaucoma, eye movement disorder, eye rolling, eyelid margin crusting, floppy iris syndrome (intraoperative )c

Ear and

labyrinth

disorders

vertigo, tinnitus,

ear

pain

Cardiac

disorders

tachycardia

atrial fibrillation, atrioventricular block, conduction disorder,

el ectrocardi ogram

QT prolonged,

bradycardia,

electrocardiogram

abnormal,

palpitations

sinus

arrhythmia

Vascular

disorders

hypertension

hypotension,

orthostatic

hypotension,

flushing

pulmonary

embolism,

venous

thrombosis

Respiratory, thoracic and mediastinal disorders

dyspnoea,

pharyngolary

ngeal

pain, cough,

epistaxis,

nasal

congestion

pneumonia

aspiration,

pulmonary

congestion,

respiratory tract

congestion, rales,

wheezing,

sleep apnoea syndrome, hyperventilatio n

dysphonia, respiratory disorder

Gastrointesti

nal

disorders

abdominal

pain,

abdominal

discomfort,

vomiting,

nausea,

constipation,

diarrhoea,

dyspepsia,

dry

mouth,

toothache

faecal

incontinence,

faecaloma,

gastroenteritis,

dysphagia,

flatulence

pancreatitis,

intestinal

obstruction,

swollen

tongue,

cheilitis

Skin and subcutaneous tissue disorders

rash,

erythema

urticaria, pruritus, alopecia, hyperkeratosis, eczema, dry skin, skin discolouration, acne, seborrhoeic dermatitis, skin disorder, skin lesion

drug eruption, dandruff

angioedem

a

Musculoskel

etal

and

connective

tissue

disorders

muscle

spasms,

musculoskele

tal

pain, back

pain,

arthralgia

blood creatine phosphokinase increased, posture abnormal, joint stiffness, joint swelling muscular weakness, neck pain

rhabdomyolysi

s

Renal and

urinary

disorders

urinary

incontinence

pollakiuria, urinary retention, dysuria

Pregnancy, puerperium, and neonatal conditions

drug

withdrawal

syndrome

neonatalc

Reproductive system and breast disorders

erectile

dysfunction,

ejaculation

disorder,

amenorrhoea,

menstrual

disorder1,

gynaecomastia,

galactorrhoea,

sexual dysfunction,

breast pain, breast

discomfort, vaginal

c

priapism , menstruation delayed, breast engorgement, breast

enlargement,

breast

discharge

discharge

General disorders and administratio n

site

conditions

oedemad,

pyrexia, chest pain, asthenia, fatigue, pain

face oedema, chills,

body temperature increased, gait abnormal, thirst, chest discomfort, malaise, feeling abnormal, discomfort

hypothermia,

body

temperature

decreased,

peripheral

coldness, drug

withdrawal

syndrome,

indurationc

Hepatobiliary

disorders

transaminases

increased,

gammaglutamyltra

nsferase

increased, hepatic enzyme increased

jaundice

Injury,

poisoning

and

procedural

complication

s

fall

procedural pain

a Hyperprolactinemia can in some cases lead to gynaecomastia, menstrual disturbances, amenorrhoea, galactorrhea.

b In placebo-controlled trials diabetes mellitus was reported in 0.18% in risperidone-treated subjects compared to a rate of 0.11% in placebo group. Overall incidence from all clinical trials was 0.43% in all risperidone-treated subjects.

c Not observed in risperidone clinical studies but observed in post-marketing environment with risperidone.

d Extrapyramidal disorder may occur: Parkinsonism (salivary hypersecretion, musculoskeletal stiffness, parkinsonism, drooling, cogwheel rigidity, bradykinesia, hypokinesia, masked facies, muscle tightness, akinesia, nuchal rigidity, muscle rigidity, parkinsonian gait, and glabellar reflex abnormal, parkinsonian rest tremor), akathisia ( akathisia, restlessness, hyperkinesia, and restless leg syndrome), tremor, dyskinesia (dyskinesia, muscle twitching, choreoathetosis, athetosis, and myoclonus), dystonia. Dystonia includes dystonia, hypertonia, torticollis, muscle contractions involuntary, muscle contracture, blepharospasm, oculogyration, tongue paralysis, facial spasm, laryngospasm, myotonia, opisthotonus, oropharyngeal spasm, pleurothotonus, tongue spasm, and trismus. It should be noted that a broader spectrum of symptoms are included, that do not necessarily have an extrapyramidal origin. Insomnia includes: initial insomnia, middle insomnia; Convulsion includes: Grand mal convulsion; Menstrual disorder includes: Menstruation irregular, oligomenorrhoea; Oedema includes: generalised oedema, oedema peripheral, pitting oedema

Undesirable effects noted with paliperidone formulations

Paliperidone is the active metabolite of risperidone, therefore, the adverse reaction profiles of these compounds (including both the oral and injectable formulations) are relevant to one another. In addition to the above adverse reactions, the following adverse reaction has been noted with the use of paliperidone products and can be expected to occur with risperidone.

Cardiac disorders: Postural orthostatic tachycardia syndrome

Class effects

As with other antipsychotics, very rare cases of QT prolongation have been reported postmarketing with risperidone. Other class-related cardiac effects reported with antipsychotics which prolong QT interval include ventricular arrhythmia, ventricular fibrillation, ventricular tachycardia, sudden death, cardiac arrest and Torsades de Pointes.

Venous thromboembolism

Cases of venous thromboembolism, including cases of pulmonary embolism and cases of deep vein thrombosis, have been reported with antipsychotic drugs (frequency unknown).

Weight gain

The proportions of Risperidone and placebo-treated adult patients with schizophrenia meeting a weight gain criterion of > 7% of body weight were compared in a pool of 6- to 8-week, placebo-controlled trials, revealing a statistically significantly greater incidence of weight gain for Risperidone (18%) compared to placebo (9%). In a pool of placebo-controlled 3-week studies in adult patients with acute mania, the incidence of weight increase of > 7% at endpoint was comparable in the Risperidone (2.5%) and placebo (2.4%) groups, and was slightly higher in the active-control group (3.5%).

In a population of children and adolescents with conduct and other disruptive behaviour disorders, in long-term studies, weight increased by a mean of 7.3 kg after 12 months of treatment. The expected weight gain for normal children between 5-12 years of age is 3 to 5 kg per year. From 12-16 years of age, this magnitude of gaining 3 to 5 kg per year is maintained for girls, while boys gain approximately 5 kg per year.

Additional information on special populations

Adverse drug reactions that were reported with higher incidence in elderly patients with dementia or paediatric patients than in adult populations are described below:

Elderly patients with dementia

Transient ischaemic attack and cerebrovascular accident were ADRs reported in clinical trials with a frequency of 1.4% and 1.5%, respectively, in elderly patients with dementia. In addition, the following ADRs were reported with a frequency >5% in elderly patients with dementia and with at least twice the frequency seen in other adult populations: urinary tract infection, peripheral oedema, lethargy, and cough.

Paediatric patients

In general, type of adverse reactions in children is expected to be similar to those observed in adults.

The following ADRs were reported with a frequency >5% in paediatric patients (5 to 17 years) and with at least twice the frequency seen in clinical trials in adults: somnolence/sedation, fatigue, headache, increased appetite, vomiting, upper respiratory tract infection, nasal congestion, abdominal pain, dizziness, cough, pyrexia, tremor, diarrhoea, and enuresis.

The effect of long-term risperidone treatment on sexual maturation and height has not been adequately studied (see 4.4, subsection “Children and Adolescents).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at: www.mhra.gov.uk/yellowcard.

4.9 Overdose

Symptoms

In general, reported signs and symptoms have been those resulting from an exaggeration of the known pharmacological effects of risperidone. These include drowsiness and sedation, tachycardia and hypotension, and extrapyramidal symptoms. In overdose, QT-prolongation and convulsions have been reported. Torsade de Pointes has been reported in association with combined overdose of Risperidone and paroxetine.

In case of acute overdose, the possibility of multiple drug involvement should be considered.

Treatment

Establish and maintain a clear airway and ensure adequate oxygenation and ventilation. Gastric lavage (after intubation, if the patient is unconscious) and administration of activated charcoal together with a laxative should be considered only when drug intake was less than one hour before. Cardiovascular monitoring should commence immediately and should include continuous electrocardiographic monitoring to detect possible arrhythmias. There is no specific antidote to Risperidone. Therefore, appropriate supportive measures should be instituted. Hypotension and circulatory collapse should be treated with appropriate measures such as intravenous fluids and/or sympathomimetic agents. In case of severe extrapyramidal symptoms, an anticholinergic medicinal product should be administered. Close medical supervision and monitoring should continue until the patient recovers.

PHARMACOLOGICAL PROPERTIES

5


5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Other antipsychotics, ATC code: N05AX08

Mechanism of action

Risperidone is a selective monoaminergic antagonist with unique properties. It has a high affinity for serotoninergic 5-HT2 and dopaminergic D2 receptors. Risperidone binds also to alpha 1-adrenergic receptors, and, with lower affinity, to H1-histaminergic and alpha2-adrenergic receptors. Risperidone has no affinity for cholinergic receptors. Although risperidone is a potent D2 antagonist, which is considered to improve the positive symptoms of schizophrenia, it causes less depression of motor activity and induction of catalepsy than classical antipsychotics. Balanced central serotonin and dopamine antagonism may reduce extrapyramidal side effect liability and extend the therapeutic activity to the negative and affective symptoms of schizophrenia.

Pharmacodynamic effects

Clinical efficacy Schizophrenia

The efficacy of risperidone in the short-term treatment of schizophrenia was established in four studies, 4- to 8-weeks in duration, which enrolled over 2500 patients who met DSM-IV criteria for schizophrenia. In a 6- week, placebo-controlled trial involving titration of risperidone in doses up to 10 mg/day administered twice daily, risperidone was superior to placebo on the Brief Psychiatric Rating Scale (BPRS) total score. In an 8- week, placebo-controlled trial involving four fixed doses of risperidone (2, 6, 10, and 16 mg/day, administered twice daily), all four risperidone groups were superior to placebo on the Positive and Negative Syndrome Scale (PANSS) total score. In an 8-week, dose comparison trial involving five fixed doses of risperidone (1, 4, 8, 12, and 16 mg/day administered twice-daily), the 4, 8, and 16 mg/day risperidone dose groups were superior to the 1 mg risperidone dose group on PANSS total score. In a 4-week, placebo-controlled dose comparison trial involving two fixed doses of risperidone (4 and 8 mg/day administered once daily), both risperidone dose groups were superior to placebo on several PANSS measures, including total PANSS and a response measure (>20% reduction in PANSS total score). In a longer-term trial, adult outpatients predominantly meeting DSM-IV criteria for schizophrenia and who had been clinically stable for at least 4 weeks on an antipsychotic medicinal product were randomised to risperidone 2 to 8 mg/day or to haloperidol for 1 to 2 years of observation for relapse. Patients receiving risperidone experienced a significantly longer time to relapse over this time period compared to those receiving haloperidol.

Manic episodes in bipolar disorder

The efficacy of risperidone monotherapy in the acute treatment of manic episodes associated with bipolar I disorder was demonstrated in three doubleblind, placebo-controlled monotherapy studies in approximately 820 patients who had bipolar I disorder, based on DSM-IV criteria. In the three studies, risperidone 1 to 6 mg/day (starting dose 3 mg in two studies and 2 mg in one study) was shown to be significantly superior to placebo on the pre-specified primary endpoint, i.e., the change from baseline in total Young Mania Rating Scale (YMRS) score at Week 3. Secondary efficacy outcomes were generally consistent with the primary outcome. The percentage of patients with a decrease of > 50% in total YMRS score from baseline to the 3-week endpoint was significantly higher for risperidone than for placebo. One of the three studies included a haloperidol arm and a 9-week double-blind maintenance phase. Efficacy was maintained throughout the 9-week maintenance treatment period. Change from baseline in total YMRS showed continued improvement and was comparable between risperidone and haloperidol at Week 12.

The efficacy of risperidone in addition to mood stabilisers in the treatment of acute mania was demonstrated in one of two 3-week double-blind studies in approximately 300 patients who met the DSM-IV criteria for bipolar I disorder. In one 3-week study, risperidone 1 to 6 mg/day starting at 2 mg/day in addition to lithium or valproate was superior to lithium or valproate alone on the pre-specified primary endpoint, i.e., the change from baseline in YMRS total score at Week 3. In a second 3-week study, risperidone 1 to 6 mg/day starting at 2 mg/day, combined with lithium, valproate, or carbamazepine was not superior to lithium, valproate, or carbamazepine alone in the reduction of YMRS total score. A possible explanation for the failure of this study was induction of risperidone and 9-hydroxy-risperidone clearance by carbamazepine, leading to subtherapeutic levels of risperidone and 9-hydroxy-risperidone. When the carbamazepine group was excluded in a post-hoc analysis, risperidone combined with lithium or valproate was superior to lithium or valproate alone in the reduction of YMRS total score.

Persistent aggression in dementia

The efficacy of risperidone in the treatment of Behavioural and Psychological Symptoms of Dementia

(BPSD), which includes behavioural disturbances, such as aggressiveness, agitation, psychosis, activity, and affective disturbances was demonstrated in three double-blind, placebo-controlled studies in 1150 elderly patients with moderate to severe dementia. One study included fixed risperidone doses of 0.5, 1, and 2 mg/day. Two flexible-dose studies included risperidone dose groups in the range of 0.5 to 4 mg/day and 0.5 to 2 mg/day, respectively. Risperidone showed statistically significant and clinically important effectiveness in treating aggression and less consistently in treating agitation and psychosis in elderly dementia patients (as measured by the Behavioural Pathology in Alzheimer’s Disease Rating Scale [BEHAVE-AD] and the Cohen-Mansfield Agitation Inventory [CMAI]). The treatment effect of risperidone was independent of Mini-Mental State Examination (MMSE) score (and consequently of the severity of dementia); of sedative properties of risperidone; of the presence or absence of psychosis; and of the type of dementia, Alzheimer’s, vascular, or mixed. (See also section 4.4)

Paediatric population

Conduct disorder

The efficacy of risperidone in the short-term treatment of disruptive behaviours was demonstrated in two double-blind placebo-controlled studies in approximately 240 patients 5 to 12 years of age with a DSM-IV diagnosis of disruptive behaviour disorders (DBD) and borderline intellectual functioning or mild or moderate mental retardation/learning disorder. In the two studies, risperidone 0.02 to 0.06 mg/kg/day was significantly superior to placebo on the pre-specified primary endpoint, i.e., the change from baseline in the Conduct Problem subscale of the Nisonger-Child Behaviour Rating Form (N-CBRF) at Week 6.

5.2 Pharmacokinetic properties

Risperidone is metabolised to 9-hydroxy-risperidone, which has a similar pharmacological activity to risperidone (see Biotransformation and Elimination).

Absorption

Risperidone is completely absorbed after oral administration, reaching peak plasma concentrations within 1 to 2 hours. The absolute oral bioavailability of risperidone is 70% (CV=25%). The relative oral bioavailability of risperidone from a tablet is 94% (CV=10%) compared with a solution. The absorption is not affected by food and thus risperidone can be given with or without meals. Steady-state of risperidone is reached within 1 day in most patients. Steady-state of 9-hydroxy-risperidone is reached within 4-5 days of dosing.

Distribution

Risperidone is rapidly distributed. The volume of distribution is 1-2 l/kg. In plasma, risperidone is bound to albumin and alpha1-acid glycoprotein. The plasma protein binding of risperidone is 90%, that of 9-hydroxyrisperidone is 77%.

Biotransformation and elimination

Risperidone is metabolised by CYP 2D6 to 9-hydroxy-risperidone, which has a similar pharmacological activity as risperidone. Risperidone plus 9-hydroxy-risperidone form the active antipsychotic fraction. CYP 2D6 is subject to genetic polymorphism. Extensive CYP 2D6 metabolisers convert risperidone rapidly into 9-hydroxy-risperidone, whereas poor CYP 2D6 metabolisers convert it much more slowly. Although extensive metabolisers have lower risperidone and higher 9-hydroxy-risperidone concentrations than poor metabolisers, the pharmacokinetics of risperidone and 9-hydroxy-risperidone combined (i.e., the active antipsychotic fraction), after single and multiple doses, are similar in extensive and poor metabolisers of CYP 2D6.

Another metabolic pathway of risperidone is N-dealkylation. In vitro studies in human liver microsomes showed that risperidone at clinically relevant concentration does not substantially inhibit the metabolism of medicines metabolised by cytochrome P450 isozymes, including CYP 1A2, CYP 2A6, CYP 2C8/9/10, CYP 2D6, CYP 2E1, CYP 3A4, and CYP 3A5. One week after administration, 70% of the dose is excreted in the urine and 14% in the faeces. In urine, risperidone plus 9-hydroxy-risperidone represent 35-45% of the dose. The remainder is inactive metabolites. After oral administration to psychotic patients, risperidone is eliminated with a half-life of about 3 hours. The elimination half-life of 9-hydroxy-risperidone and of the active antipsychotic fraction is 24 hours.

Linearity/non-linearity

Risperidone plasma concentrations are dose-proportional within the therapeutic dose-range.

Elderly, hepatic and renal impairment

A single-dose study showed on average a 43% higher active antipsychotic fraction plasma concentrations, a 38% longer half-life and a reduced clearance of the active antipsychotic fraction by 30% in the elderly. Higher active antipsychotic fraction plasma concentrations and a reduced clearance of the active antipsychotic fraction by on average 60% were observed in patients with renal insufficiency. Risperidone plasma concentrations were normal in patients with liver insufficiency, but the mean free fraction of risperidone in plasma was increased by about 35%.

Paediatric patients

The pharmacokinetics of risperidone, 9-hydroxy-risperidone and the active antipsychotic fraction in children are similar to those in adults.

Gender, race and smoking habits

A population pharmacokinetic analysis revealed no apparent effect of gender, race or smoking habits on the pharmacokinetics of risperidone or the active antipsychotic fraction.

5.3 Preclinical safety data

In (sub) chronic toxicity studies, in which dosing was started in sexually immature rats and dogs, dose-dependant effects were present in male and female genital tract and mammary gland. These effects were related to the increased serum prolactin levels, resulting from the dopamine D2-receptor blocking activity of risperidone. In addition, tissue culture studies suggest that cell growth in human breast tumours may be stimulated by prolactin. Risperidone was not teratogenic in rat and rabbit. In rat reproduction studies with risperidone, adverse effects were seen on mating behaviour of the parents, and on the birth weight and survival of the offspring. In rats, intrauterine exposure to risperidone was associated with cognitive deficits in

adulthood. Other dopamine antagonists, when administered to pregnant animals, have caused negative effects on learning and motor development in the offspring.

In a toxicity study in juvenile rats, increased pup mortality and a delay in physical development was observed. In a 40-week study with juvenile dogs, sexual maturation was delayed. Based on AUC, long bone growth was not affected in dogs at 3.6-times the maximum human exposure in adolescents (1.5 mg/day); while effects on long bones and sexual maturation were observed at 15 times the maximum human exposure in adolescents.

Risperidone was not genotoxic in a battery of tests. In oral carcinogenicity studies of risperidone in rats and mice, increases in pituitary gland adenomas (mouse), endocrine pancreas adenomas (rat), and mammary gland adenomas (both species) were seen. These tumours can be related to prolonged dopamine D2 antagonism and hyperprolactinaemia. The relevance of these tumour findings in rodents in terms of human risk is unknown. In vitro and in vivo, animal models show that at high doses risperidone may cause QT interval prolongation, which has been associated with a theoretically increased risk of torsade de pointes in patients.

6    PHARMACEUTICAL PARTICULARS

6.1    List of excipients

Tablet core:

Lactose monohydrate Cellulose, microcrystalline (E 460)

Silica, colloidal anhydrous Magnesium stearate (E470b)

Film coating:

Opadry green 03B51373 containing: hypromellose (E464) titanium dioxide (E171) macrogol (PEG 400) quinoline yellow (E104) indigotine (E132)

6.2    Incompatibilities

Not applicable.

6.3 Shelf life

Blisters:

2 years

HDPE container:

Unopened: 2 years

After first opening: 3 months

6.4 Special precautions for storage

Do not store above 25°C.

6.5 Nature and contents of container

Clear PVC/ PE/ PVDC/ Aluminium foil blister pack and white opaque round HDPE bottle closed with white opaque polypropylene closure.

Blister pack:

6, 10, 20, 28, 30, 40, 50, 56, 60 or 100 film-coated tablets.

HDPE bottle:

100 or 250 film-coated tablets.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7 MARKETING AUTHORISATION HOLDER

Milpharm Limited

Ares, Odyssey Business Park

West End Road, South Ruislip HA4 6QD

United Kingdom

MARKETING AUTHORISATION NUMBER(S)

PL 16363/0263

9    DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

31/01/2013

10    DATE OF REVISION OF THE TEXT

20/03/2014