Simvastatin 40mg Film Coated Tablets
Out of date information, search another1. NAME OF THE MEDICINAL PRODUCT
Simvastatin 40 mg, film coated tablets
2. QUALITATIVE AND QUANTITATIVE COMPOSITION
Each film coated tablet contains 40 mg of simvastatin.
For excipients, see 6.1.
3. PHARMACEUTICAL FORM
Film coated tablets.
The tablets are white, biconvex and with 40 on one side and SVT on the other side.
4. CLINICAL PARTICULARS
4.1 Therapeutic indications
Hypercholesterolaemia
Treatment of primary hypercholesterolaemia or mixed dyslipidaemia, as an adjunct to diet, when response to diet and other non-pharmacological treatments (e.g. exercise, weight reduction) is inadequate.
Treatment of homozygous familial hypercholesterolaemia as an adjunct to diet and other lipid lowering treatments (e.g. LDL apheresis) or if such treatments are not appropriate.
Cardiovascular prevention
Reduction of cardiovascular mortality and morbidity in patients with manifest atherosclerotic cardiovascular disease or diabetes mellitus, with either normal or increased cholesterol levels, as an adjunct to correction of other risk factors and other cardioprotective therapy (see section 5.1).
4.2 Posology and method of administration
The dosage range is 5-80 mg/day given orally as a single dose in the evening. Adjustments of dosage, if required, should be made at intervals of not less than 4 weeks, to a maximum of 80 mg/day given as a single dose in the evening. The 80 mg dose is only recommended in patients with severe hypercholesterolaemia and high risk for cardiovascular complications. Please use Simvastatin tablets containing 80 mg simvastatin for these indications.
Hypercholesterolaemia
The patient should be placed on a standard cholesterol-lowering diet, and should continue on this diet during treatment with Simvastatin. The usual starting dose is 10-20 mg/day given as a single dose in the evening. Patients who require a large reduction in LDL-C (more than 45%) may be started at 20-40 mg/day given as a single dose in the evening. Adjustments of dosage, if required, should be made as specified above.
Homozygous familial hypercholesterolaemia
Based on the results of a controlled clinical study, the recommended dosage is Simvastatin 40 mg/day in the evening or 80 mg/day in 3 divided doses of 20 mg, 20 mg, and an evening dose of 40 mg. Simvastatin should be used as an adjunct to other lipid-lowering treatments (e.g., LDL apheresis) in these patients or if such treatments are unavailable.
Cardiovascular prevention
The usual dose of Simvastatin is 20 to 40 mg/day given as a single dose in the evening in patients at high risk of coronary heart disease (CHD, with or without hyperlipidaemia). Drug therapy can be initiated simultaneously with diet and exercise. Adjustments of dosage, if required, should be made as specified above.
Concomitant therapy
Simvastatin is effective alone or in combination with bile acid sequestrants. Dosing should occur either >2 hours before or >4 hours after administration of a bile acid sequestrant.
In patients taking ciclosporin, gemfibrozil, other fibrates (except fenofibrate) or lipidlowering doses (>1 g/day) of niacin concomitantly with Simvastatin, the dose of Simvastatin should not exceed 10 mg/day. In patients taking amiodarone or verapamil concomitantly with Simvastatin, the dose of Simvastatin should not exceed 20 mg/day. (See sections 4.4 and 4.5).
Dosage in renal insufficiency
No modification of dosage should be necessary in patients with moderate renal insufficiency. In patients with severe renal insufficiency (creatinine clearance <30 mL/min), dosages above 10 mg/day should be carefully considered and, if deemed necessary, implemented cautiously.
Use in the elderly
No dosage adjustment is necessary. Use in children and adolescents
Efficacy and safety of use in children has not been established. Therefore Simvastatin is not recommended for paediatric use.
4.3 Contraindications
• Hypersensitivity to simvastatin or to any of the excipients.
• Active liver disease or unexplained persistent elevations of serum transaminases.
• Pregnancy and lactation (see section 4.6).
• Concomitant administration of potent CYP3A4 inhibitors (e.g. itraconazole, ketoconazole, HIV protease inhibitors, erythromycin, clarithromycin, telithromycin and nefazodone) (see section 4.5)
4.4. Special warnings and precautions for use
Myopathy/Rhabdomyolysis
Simvastatin occasionally causes myopathy manifested as muscle pain, tenderness or weakness with creatine kinase (CK) above ten times the upper limit of normal (ULN). Myopathy sometimes takes the form of rhabdomyolysis with or without acute renal failure secondary to myoglobinuria, and rare fatalities have occurred. The risk of myopathy is increased by high levels of HMG-CoA reductase inhibitory activity in plasma.
The risk of myopathy/rhabdomyolysis is dose related. The incidence in clinical trials, in which patients were carefully monitored and some interacting medicinal products were excluded, has been approximately 0.03% at 20 mg, 0.08% at 40 mg and 0.4% at 80 mg.
Creatine Kinase measurement
Creatine Kinase (CK) should not be measured following strenuous exercise or in the presence of any plausible alternative cause of CK increase as this makes value interpretation difficult. If CK levels are significantly elevated at baseline (>5x ULN), levels should be remeasured within 5 to 7 days later to confirm the results.
Before the treatment
All patients starting therapy with simvastatin, or whose dose of simvastatin is being increased, should be advised of the risk of myopathy and told to report promptly any unexplained muscle pain, tenderness or weakness.
Caution should be exercised in patients with pre-disposing factors for rhabdomyolysis. In order to establish a reference baseline value, a CK level should be measured before starting a treatment in the following situations:
- Elderly (age > 70 years)
- Renal impairment
- Uncontrolled hypothyroidism
- Personal or familial history of hereditary muscular disorders
- Previous history of muscular toxicity with a statin or fibrate
- Alcohol abuse
In such situations, the risk of treatment should be considered in relation to possible benefit and clinical monitoring is recommended. If a patient has previously experienced a muscle disorder on a fibrate or a statin, treatment with a different member of the class should only be initiated with caution. If CK levels are significantly elevated at baseline (>5x ULN), treatment should not be started.
Whilst on treatment
If muscle pain, weakness or cramps occur whilst a patient is receiving treatment with a statin, their CK levels should be measured. If these levels are found, in the absence of strenuous exercise, to be significantly elevated (>5x ULN), treatment should be stopped. If muscular symptoms are severe and cause daily discomfort, even if CK levels are <5x ULN, treatment discontinuation may be considered. If myopathy is suspected for any other reason, treatment should be discontinued.
If symptoms resolve and CK levels return to normal, then re-introduction of the statin or introduction of an alternative statin may be considered at the lowest dose and with close monitoring.
Therapy with simvastatin should be temporarily stopped a few days prior to elective major surgery and when any major medical or surgical condition supervenes.
Measures to reduce the risk of myopathy caused by medicinal product interactions (see also section 4.5)
The risk of myopathy and rhabdomyolysis is increased by concomitant use of simvastatin with inhibitors of CYP3A4 (such as itraconazole, ketoconazole, erythromycin, clarithromycin, telithromycin, HIV protease inhibitors, ciclosporin, nefazodone), gemfibrozil, other fibrates, or lipid-lowering doses (>1 g/day) of niacin.
The risk of myopathy and rhabdomyolysis is also increased by concomitant use of amiodarone or verapamil with higher doses of simvastatin (see sections 4.2 and 4.5). There is also a slight increase in risk when diltiazem is used with simvastatin 80 mg.
Use of simvastatin concomitantly with itraconazole, ketoconazole, HIV protease inhibitors, erythromycin, clarithromycin, telithromycin and nefazodone is contraindicated. If treatment with itraconazole, ketoconazole, erythromycin, clarithromycin or telithromycin is unavoidable, therapy with simvastatin should be suspended during the course of treatment. Caution should be exercised when combining simvastatin with other CYP3A4 inhibitors (see sections 4.3 and 4.5). Concomitant intake of grapefruit juice and simvastatin should be avoided.
The dose of simvastatin should not exceed 10 mg daily in patients receiving concomitant medication with ciclosporin, gemfibrozil, other fibrates (except fenofibrate) or lipidlowering doses (>1 g/day) of niacin (see sections 4.2 and 4.5). The combined use of simvastatin with gemfibrozil should be avoided, unless the benefits are likely to outweigh the increased risks of this drug combination. The benefits of the combined use of simvastatin 10 mg daily with other fibrates (except fenofibrate), niacin or ciclosporin should be carefully weighed against the potential risks of these combinations.
Caution should be used when prescribing fenofibrate with simvastatin, as either agent can cause myopathy when given alone.
The combined use of simvastatin at doses higher than 20 mg daily with amiodarone or verapamil should be avoided unless the clinical benefit is likely to outweigh the increased risk of myopathy (see sections 4.2 and 4.5).
Hepatic Effects
In clinical studies, persistent increases (to more than 3 times the upper limit of normal) in serum transaminases have occurred in a few adult patients who received simvastatin. When simvastatin was interrupted or discontinued in these patients, the transaminase levels usually fell slowly to pre-treatment levels.
It is recommended that liver function tests be performed before treatment begins and thereafter when clinically indicated. Patients titrated to the 80-mg dose should receive an additional test prior to titration, 3 months after titration to the 80-mg dose, and periodically thereafter (e.g., semi-annually) for the first year of treatment. Special attention should be paid to patients who develop elevated serum transaminase levels, and in these patients, measurements should be repeated promptly and then performed more frequently. If the transaminase levels show evidence of progression, particularly if they rise to 3X ULN and are persistent, simvastatin should be discontinued.
The product should be used with caution in patients who consume substantial quantities of alcohol.
As with other lipid-lowering agents, moderate (less than 3X ULN) elevations of serum transaminases have been reported following therapy with simvastatin. These changes appeared soon after initiation of therapy with simvastatin, were often transient, were not accompanied by any symptoms and interruption of treatment was not required.
Diabetes Mellitus
Some evidence suggests that statins as a class raise blood glucose and in some patients, at high risk of future diabetes, may produce a level of hyperglycaemia where formal diabetes care is appropriate. This risk, however, is outweighed by the reduction in vascular risk with statins and therefore should not be a reason for stopping statin treatment. Patients at risk (fasting glucose 5.6 to 6.9 mmol/L, BMI>30kg/m2, raised triglycerides, hypertension) should be monitored both clinically and biochemically according to national guidelines.
Interstitial lung disease
Exceptional cases of interstitial lung disease have been reported with some statins, especially with long term therapy (see section 4.8). Presenting features can include dyspnoea, non productive cough and deterioration in general health (fatigue, weight loss and fever). If it is suspected a patient has developed interstitial lung disease, statin therapy should be discontinued.
Excipient
Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.
4.5 Interactions with other medicinal products and other forms of interaction
Pharmacodynamic interactions
Interactions with lipid-lowering medicinal products that can cause myopathy when given alone
The risk of myopathy is increased during concomitant administration with fibrates (except fenofibrate) and niacin (nicotinic acid) (>1 g/day). There is also a pharmacokinetic interaction with gemfibrozil (see below and sections 4.2 and 4.4). When simvastatin and fenofibrate are given concomitantly, there is no evidence that the risk of myopathy exceeds the sum of the individual risks of each agent.
Pharmacokinetic interactions
Effects of other medicinal products on simvastatin Interactions involving CYP3A4
Simvastatin is a substrate of cytochrome P450 3A4. Potent inhibitors of cytochrome P450 3A4 increase the risk of myopathy and rhabdomyolysis by increasing the concentration of HMG-CoA reductase inhibitory activity in plasma during simvastatin therapy. Such inhibitors include itraconazole, ketoconazole, erythromycin, clarithromycin, telithromycin, HIV protease inhibitors, nefazodone, and ciclosporin. Concomitant administration of itraconazole resulted in a more than 10-fold increase in exposure to simvastatin acid (the active beta-hydroxyacid metabolite) Telithromycin caused an 11-fold increase in exposure to simvastatin acid.
Therefore, combination with itraconazole, ketoconazole, HIV protease inhibitors, erythromycin, clarithromycin, telithromycin and nefazodone is contraindicated. If treatment with itraconazole, ketoconazole, erythromycin, clarithromycin or telithromycin is unavoidable, therapy with simvastatin should be suspended during the course of treatment. Caution should be exercised when combining simvastatin with other CYP3A4 inhibitors (see sections 4.3 and 4.4).
Gemfibrozil
Gemfibrozil increases the AUC of simvastatin acid by 1.9-fold, possibly due to inhibition of the glucuronidation pathway (see sections 4.2 and 4.4).
Amiodarone and verapamil
The risk of myopathy and rhabdomyolysis is increased by concomitant administration of amiodarone or verapamil with higher doses of simvastatin (see section 4.4). Therefore, the dose of simvastatin should not exceed 20 mg daily in patients receiving concomitant medication with amiodarone or verapamil, unless the clinical benefit is likely to outweigh the increased risk of myopathy and rhabdomyolysis. In an ongoing clinical trial, myopathy has been reported in 6% of patients receiving simvastatin 80 mg and amiodarone.
An analysis of the available clinical trials showed an approximately 1% incidence of myopathy in patients receiving simvastatin 40 mg or 80 mg and verapamil. In a pharmacokinetic study, concomitant administration with verapamil resulted in a 2.3-fold increase in exposure of simvastatin acid.
Diltiazem
An analysis of the available clinical trials showed a 1% incidence of myopathy in patients receiving simvastatin 80 mg and diltiazem. The risk of myopathy in patients taking simvastatin 40 mg was not increased by concomitant diltiazem (see section 4.4). In a pharmacokinetic study, concomitant administration of diltiazem caused a 2.7-fold increase in exposure of simvastatin acid.
Grapefruit juice inhibits cytochrome P450 3A4. Concomitant intake of large quantities (over 1 litre daily) of grapefruit juice and simvastatin resulted in a 7-fold increase in exposure to simvastatin acid. Intake of 240 ml grapefruit juice in the morning and simvastatin in the evening also resulted in a 1.9-fold increase. Intake of grapefruit juice during treatment with simvastatin should therefore be avoided.
Oral anticoagulants
In two clinical studies, one in normal volunteers and the other in hypercholesterolaemic patients, simvastatin 20-40 mg/day modestly potentiated the effect of coumarin anticoagulants: the prothrombin time, reported as International Normalized Ratio (INR), increased from a baseline of 1.7 to 1.8 and from 2.6 to 3.4 in the volunteer and patient studies, respectively. In patients taking coumarin anticoagulants, prothrombin time should be determined before starting simvastatin and frequently enough during early therapy to ensure that no significant alteration of prothrombin time occurs. Once a stable prothrombin time has been documented, prothrombin times can be monitored at the intervals usually recommended for patients on coumarin anticoagulants. If the dose of simvastatin is changed or discontinued, the same procedure should be repeated. Simvastatin therapy has not been associated with bleeding or with changes in prothrombin time in patients not taking anticoagulants.
Effects of simvastatin on the pharmacokinetics of other medicinal products Simvastatin does not have an inhibitory effect on cytochrome P450 3A4. Therefore, simvastatin is not expected to affect plasma concentrations of substances metabolised via cytochrome P450 3A4.
4.6 Pregnancy and lactation
Pregnancy
Simvastatin is contraindicated during pregnancy (see section 4.3).
Safety in pregnant women has not been established. No controlled clinical trials with simvastatin have been conducted in pregnant women. Rare reports of congenital anomalies following intrauterine exposure to HMG-CoA reductase inhibitors have been received. However, in an analysis of approximately 200 prospectively followed pregnancies exposed during the first trimester to Simvastatin or another closely related HMG-CoA reductase inhibitor, the incidence of congenital anomalies was comparable to that seen in the general population. This number of pregnancies was statistically sufficient to exclude a 2.5-fold or greater increase in congenital anomalies over the background incidence.
Although there is no evidence that the incidence of congenital anomalies in offspring of patients taking Simvastatin or another closely related HMG-CoA reductase inhibitor differs from that observed in the general population, maternal treatment with Simvastatin may reduce the foetal levels of mevalonate which is a precursor of cholesterol biosynthesis. Atherosclerosis is a chronic process, and ordinarily discontinuation of lipid-lowering medicinal products during pregnancy should have little impact on the long-term risk associated with primary hypercholesterolaemia. For these reasons, Simvastatin should not be used in women who are pregnant, trying to become pregnant or suspect they are pregnant. Treatment with Simvastatin should be suspended for the duration of pregnancy or until it has been determined that the woman is not pregnant. (See section 4.3.)
Lactation
It is not known whether simvastatin or its metabolites are excreted in human milk. Because many medicinal products are excreted in human milk and because of the potential for serious adverse reactions, women taking Simvastatin should not breast-feed their infants (see section 4.3).
4.7 Effects on ability to drive and use machines
Simvastatin has no or negligible influence on the ability to drive and use machines. However, when driving vehicles or operating machines, it should be taken into account that dizziness has been reported rarely in post-marketing experiences.
4.8. Undesirable effects
The frequencies of the following adverse events, which have been reported during clinical studies and/or post-marketing use, are categorized based on an assessment of their incidence rates in large, long-term, placebo-controlled, clinical trials including HPS and 4S with 20,536 and 4,444 patients, respectively (see section 5.1). For HPS, only serious adverse events were recorded as well as myalgia, increases in serum transaminases and CK. For 4S, all the adverse events listed below were recorded. If the incidence rates on simvastatin were less than or similar to that of placebo in these trials, and there were similar reasonably causally related spontaneous report events, these adverse events are categorized as “rare”.
In HPS (see section 5.1) involving 20,536 patients treated with 40 mg/day of Simvastatin (n=10,269) or placebo (n=10,267), the safety profiles were comparable between patients treated with Simvastatin 40 mg and patients treated with placebo over the mean 5 years of the study. Discontinuation rates due to side effects were comparable (4.8% in patients treated with Simvastatin 40 mg compared with 5.1% in patients treated with placebo). The incidence of myopathy was <0.1% in patients treated with Simvastatin 40 mg. Elevated transaminases (>3X ULN confirmed by repeat test) occurred in 0.21% (n=21) of patients treated with Simvastatin 40 mg compared with 0.09% (n=9) of patients treated with placebo.
The frequencies of adverse events are ranked according to the following: Very common (>1/10),
Common (>1/100, <1/10), Uncommon (>1/1000, <1/100), Rare (>1/10,000, <1/1000),
Very rare (<1/10,000) including isolated reports.
Blood and lymphatic system disorders:
Rare: anaemia
Gastrointestinal disorders:
Rare: constipation, abdominal pain, flatulence, dyspepsia, diarrhoea, nausea, vomiting, pancreatitis
General disorders and administration site conditions:
Rare: asthenia
Hepato-biliary disorders:
Rare: hepatitis/jaundice
Musculoskeletal, connective tissue and bone disorders:
Rare: myopathy, rhabdomyolysis (see section 4.4), myalgia, muscle cramps
Nervous system disorders:
Rare: headache, paresthesia, dizziness, and peripheral neuropathy
Skin and subcutaneous tissue disorders:
Rare: rash, pruritus, and alopecia
An apparent hypersensitivity syndrome has been reported rarely which has included some of the following features: angioedema, lupus-like syndrome, polymyalgia rheumatica, dermatomyositis, vasculitis, thrombocytopenia, eosinophilia, ESR increased, arthritis and arthralgia, urticaria, photosensitivity, fever, flushing, dyspnoea and malaise.
Investigations:
Rare: increases in serum transaminases (alanine aminotransferase, aspartate aminotransferase, y-glutamyl transpeptidase) (see section 4.4 Hepatic effects), elevated alkaline phosphatase; increase in serum CK levels (see section 4.4)
The following adverse events have been reported with some statins:
• Sleep disturbances, including insomnia and nightmares
• Memory loss
• Sexual dysfunction
• Depression
• Exceptional cases of interstitial lung disease, especially with long term therapy (see section
4.4)
DiabetesMellitus: Frequency will depend on the presence or absence of risk factors (fasting blood glucose > 5.6 mmol/L, BMI>30kg/m2, raised triglycerides, history of hypertension).
4.9 Overdose
To date, a few cases of overdosage have been reported; the maximum dose taken was 3.6 g. All patients recovered without sequelae. There is no specific treatment in the event of overdose. In this case, symptomatic and supportive measures should be adopted.
5. PHARMACOLOGICAL PROPERTIES
5.1 Pharmacodynamic properties
Pharmacotherapeutic group: HMG-Co A reductase inhibitor ATC -Code: C10A A01
After oral ingestion simvastatin, which is an inactive lactone, is hydrolyzed in the liver to the corresponding active beta-hydroxyacid form which has a potent activity in inhibiting HMG-CoA reductase (3 hydroxy - 3 methylglutaryl CoA reductase). This enzyme catalyses the conversion of HMG-CoA to mevalonate, an early and rate-limiting step in the biosynthesis of cholesterol.
Simvastatin has been shown to reduce both normal and elevated LDL-C concentrations.
LDL is formed from very-low-density protein (VLDL) and is catabolised predominantly by the high affinity LDL receptor. The mechanism of the LDL-lowering effect of Simvastatin may involve both reduction of VLDL-cholesterol (VLDL-C) concentration and induction of the LDL receptor, leading to reduced production and increased catabolism of LDL-C. Apolipoprotein B also falls substantially during treatment with Simvastatin. In addition, Simvastatin moderately increases HDL-C and reduces plasma TG. As a result of these changes the ratios of total- to HDL-C and LDL- to HDL-C are reduced.
High Risk of Coronary Heart Disease (CHD) or Existing Coronary Heart Disease In the Heart Protection Study (HPS), the effects of therapy with Simvastatin were assessed in 20,536 patients (age 40-80 years), with or without hyperlipidaemia, and with coronary heart disease, other occlusive arterial disease or diabetes mellitus. In this study, 10,269 patients were treated with Simvastatin 40 mg/day and 10,267 patients were treated with placebo for a mean duration of 5 years. At baseline, 6,793 patients (33%) had LDL-C levels below 116 mg/dL; 5,063 patients (25%) had levels between 116 mg/dL and 135 mg/dL; and 8,680 patients (42%) had levels greater than 135 mg/dL.
Treatment with Simvastatin 40 mg/day compared with placebo significantly reduced the risk of all cause mortality (1328 [12.9%] for simvastatin treated patients versus 1507 [14.7%] for patients given placebo; p=0.0003), due to an 18% reduction in coronary death rate (587 [5.7%] versus 707 [6.9%]; p=0.0005). The reduction in non-vascular deaths did not reach statistical significance. Simvastatin also decreased the risk of major coronary events (a composite endpoint comprised of non-fatal MI or CHD death) by 27% (p<0.0001). Simvastatin reduced the need for undergoing coronary revascularization procedures (including coronary artery bypass grafting or percutaneous transluminal coronary angioplasty) and peripheral and other non-coronary revascularization procedures by 30% (p<0.0001) and 16% (p=0.006), respectively. Simvastatin reduced the risk of stroke by 25% (p<0.0001), attributable to a 30% reduction in ischaemic stroke (p<0.0001). In addition, within the subgroup of patients with diabetes, Simvastatin reduced the risk of developing macrovascular complications, including peripheral revascularization procedures (surgery or angioplasty), lower limb amputations, or leg ulcers by 21% (p=0.0293). The proportional reduction in event rate was similar in each subgroup of patients studied, including those without coronary disease but who had cerebrovascular or peripheral artery disease, men and women, those aged either under or over 70 years at entry into the study, presence or absence of hypertension, and notably those with LDL cholesterol below 3.0 mmol/l at inclusion.
In the Scandinavian Simvastatin Survival Study (4S), the effect of therapy with Simvastatin on total mortality was assessed in 4,444 patients with CHD and baseline total cholesterol 212-309 mg/dL (5.5-8.0 mmol/L). In this multicenter, randomised, double-blind, placebo-controlled study, patients with angina or a previous myocardial infarction (MI) were treated with diet, standard care, and either Simvastatin 20-40 mg/day (n=2,221) or placebo (n=2,223) for a median duration of 5.4 years. Simvastatin reduced the risk of death by 30%. The risk of CHD death was reduced by 42%. Simvastatin also decreased the risk of having major coronary events (CHD death plus hospital-verified and silent nonfatal MI) by 34%. Furthermore, Simvastatin significantly reduced the risk of fatal plus nonfatal cerebrovascular events (stroke and transient ischaemic attacks) by 28%. There was no statistically significant difference between groups in non-cardiovascular mortality.
Pharmacokinetic properties
5.2
Simvastatin is an inactive lactone which is readily hydrolyzed in vivo to the corresponding beta-hydroxyacid, a potent inhibitor of HMG-CoA reductase. Hydrolysis takes place mainly in the liver; the rate of hydrolysis in human plasma is very slow.
Absorption
In man simvastatin is well absorbed and undergoes extensive hepatic first-pass extraction. The extraction in the liver is depending on the hepatic blood flow. The liver is the primary site of action of the active form. The availability of the beta-hydroxyacid to the systemic circulation following an oral dose of simvastatin was found to be less than 5% of the dose. Maximum plasma concentration of active inhibitors is reached approximately 1-2 hours after administration of simvastatin. Concomitant food intake does not affect the absorption.
The pharmacokinetics of single and multiple doses of simvastatin showed that no accumulation of medicinal product occurred after multiple dosing.
Distribution
The protein binding of simvastatin and its active metabolite is >95%.
Elimination
Simvastatin is a substrate of CYP3A4 (see sections 4.3 and 4.5). The major metabolites of simvastatin present in human plasma are the beta-hydroxyacid and four additional active metabolites. Following an oral dose of radioactive simvastatin to man, 13% of the radioactivity was excreted in the urine and 60% in the faeces within 96 hours. The amount recovered in the faeces represents absorbed medicinal product equivalents excreted in bile as well as unabsorbed medicinal product. Following an intravenous injection of the beta-hydroxyacid metabolite its half-life averaged 1.9 hours. An average of only 0.3% of the IV dose was excreted in urine as inhibitors.
5.3 Preclinical safety data
Based on conventional animal studies regarding pharmacodynamics, repeated dose toxicity, genotoxicity and carcinogenicity, there are no other risks for the patient than may be expected on account of the pharmacological mechanism. At maximally tolerated doses in both the rat and the rabbit, simvastatin produced no foetal malformations, and had no effects on fertility, reproductive function or neonatal development.
6. PHARMACEUTICAL PARTICULARS
6.1 List of excipients
Core:
- Lactose anhydrous
- Microcrystalline cellulose (E460)
- Pregelatinised maize starch
- Butylhydroxyanisole (E320)
- Talc (E553b)
- Magnesium stearate (E572)
Film coating:
- Magnesium stearate (E572)
- Talc (E553b)
- Hydroxypropylcellulose (E463)
- Hypromellose (E464)
- Titanium dioxide (E171)
6.2 Incompatibilities
Not applicable
6.3 Shelf-life
2 years.
6.4 Special precautions for storage
No special precautions for storage.
6.5 Nature and contents of container
Blister packs of PVC/PE/PVDC/Al blisters containing 28 tablets.
6.6 Instructions for use/handling
No special requirements
7. MARKETING AUTHORISATION HOLDER
Somex Pharma 600 High Road Seven Kings Ilford, Essex, IG3 8BS United Kingdom
MARKETING AUTHORISATION NUMBER
8.
PL 15764/0007
9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION
6th January 2005
10 DATE OF REVISION OF THE TEXT
28/05/2012