Medine.co.uk

Out of date information, search another

Tensipine Mr 10

Out of date information, search another
Informations for option: Tensipine Mr 10, show other option

SUMMARY OF PRODUCT CHARACTERISTICS

1    NAME OF THE MEDICINAL PRODUCT

Tensipine MR 10

2    QUALITATIVE AND QUANTITATIVE COMPOSITION

One film-coated tablet contains 10mg nifedipine.

For excipients see Section 6.1.

3    PHARMACEUTICAL FORM

Modified release tablets for oral administration.

Pink-grey lacquered, modified release tablets each containing 10mg nifedipine, one side marked TMR and the reverse side marked 10.

4.    CLINICAL PARTICULARS

4.1.    Therapeutic Indications

For the prophylaxis of chronic stable angina pectoris and the treatment of hypertension.

4.2 Posology and method of administration

Method of Administration Oral use.

As a rule, tablets are swallowed whole with a little liquid, either with or without food. Tensipine MR should not be taken with grapefruit juice (see Section 4.5).

Dosage regimen

The recommended starting dose of Tensipine MR is 10mg every 12 hours swallowed with water with subsequent titration of dosage according to response. The dose may be adjusted to 40mg every 12 hours, to a maximum daily dose of 80mg.

Co-administration with CYP 3A4 inhibitors or CYP 3A4 inducers may result in the recommendation to adapt the nifedipine dose or not to use nifedipine at all (see Section 4.5).

Duration of treatment

Treatment may be continued indefinitely.

Additional information on special _populations

Children and adolescents

The safety and efficacy of nifedipine in children below 18 years of age has not been established. Currently available data for the use of nifedipine in hypertension are described in section 5.1.

Elderly patients

The pharmacokinetics of nifedipine are altered in the elderly so that lower maintenance doses of nifedipine may be required compared to younger patients.

Patients with hepatic impairment

Nifedipine is metabolized primarily by the liver and therefore patients with liver dysfunction should be carefully monitored and in severe cases, a dose reduction may be necessary.

Patients with renal impairment

Based on pharmacokinetic data, no dosage adjustment is required in patients with renal impairment.

4.3 Contraindications

Tensipine MR should not be administered to patients with known hypersensitivity to nifedipine or to other dihydropyridines because of the theoretical risk of cross-reaction, or to any of the excipients.

Tensipine MR is contraindicated in pregnancy before week 20 and during breastfeeding (see Sections 4.4, 4.6 and 5.3).

Tensipine MR should not be used in cardiogenic shock, clinically significant aortic stenosis, unstable angina, or during or within one month of a myocardial infarction.

Tensipine MR should not be used for the treatment of acute attacks of angina.

The safety of Tensipine MR in malignant hypertension has not been established.

Tensipine MR should not be used for secondary prevention of myocardial infarction.

Tensipine MR should not be administered concomitantly with rifampicin since effective plasma levels of nifedipine may not be achieved owing to enzyme induction.

4.4 Special warnings and precautions for use

Tensipine MR is not a beta-blocker and therefore gives no protection against the dangers of abrupt beta-blocker withdrawal; any such withdrawal should be by gradual reduction of the dose of beta-blocker preferably over 8 - 10 days.

Tensipine MR may be used in combination with beta-blocking drugs and other antihypertensive agents but the possibility of an additive effect resulting in postural hypotension should be borne in mind. Tensipine MR will not prevent possible rebound effects after cessation of other antihypertensive therapy.

Care must be exercised in patients with very low blood pressure (severe hypotension with systolic pressure less than 90mm Hg).

Careful monitoring of blood pressure must be exercised when administering nifedipine with IV magnesium sulphate, owing to the possibility of an excessive fall in blood pressure, which could harm both mother and foetus. For further information regarding use in pregnancy, refer to section 4.6.

In patients with impaired liver function, careful monitoring, and in severe cases, a dose reduction may be necessary.

Tensipine MR should be used with caution in patients whose cardiac reserve is poor. Deterioration of heart failure has occasionally been observed with nifedipine.

Diabetic patients taking Tensipine MR may require adjustment of their control.

In dialysis patients with malignant hypertension and hypovolaemia, a marked decrease in blood pressure can occur.

Nifedipine is metabolized via the cytochrome P450 3A4 system. Drugs that are known to inhibit or to induce this enzyme system may therefore alter the first pass or the clearance of nifedipine (see Section 4.5).

Drugs that are known inhibitors of the cytochrome P450 3A4 system, and which may therefore lead to increased plasma concentrations of nifedipine include, for example:

-    macrolide antiobiotics (erythromycin)

-    anti-HIV protease inhibitors (e.g. ritonavir)

-    azole anti-mycotics (e.g. ketoconazole)

-    the antidepressants, nefazodone and Fluoxetine

-    quinupristin/dalfopristin

-    valproic acid

-    cimetidine

Upon co-administration with these drugs, the blood pressure should be monitored and, if necessary, a reduction of the nifedipine dose should be considered (see Section 4.5).

Since this medicinal product contains lactose, patients with rare heriditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.

For use in special populations see Section 4.2.

4.5 Interaction with other medicinal products and other forms of interaction

Drugs that affect nifedipine:

Nifedipine is metabolized via the cytochrome P450 3A4 system, located both in the intestinal mucosa and in the liver. Drugs that are known to either inhibit or to induce this enzyme system may therefore alter the first pass (after oral administration) or the clearance of nifedipine (see Section 4.4).

The extent as well as the duration of interactions should be taken into account when administering nifedipine together with the following drugs:

Rifampicin: Rifampicin strongly induces the cytochrome P450 3A4 system. Upon coadministration with rifampicin, the bioavailability of nifedipine is distinctly reduced and this its efficacy weakened. The use of nifedipine in combination with rifampicin is therefore contraindicated (see Section 4.3)

Upon co-administration of known inhibitors of the cytochrome P450 3A4 system, the blood pressure should be monitored and, if necessary, a reduction in the nifedipine dose considered (see Sections 4.2 and 4.4). In the majority of these cases, no formal studies to assess the potential for a drug interaction between nifedipine and the drug(s) listed have been undertaken, thus far.

Drugs increasing nifedipine exposure:

-    macrolide antiobiotics (erythromycin)

-    anti-HIV protease inhibitors (e.g. ritonavir)

-    azole anti-mycotics (e.g. ketoconazole)

-    fluoxetine

-    nefazodone

-    quinupristin/dalfopristin

-    cisapride

-    valproic acid

-    cimetidine

-    diltiazem

Upon co-administration of inducers of the cytochrome P450 3A4 system, the clinical response to nifedipine should be monitored and, if necessary, an increase in the nifedipine dose considered. If the dose of nifedipine is increased during coadministration of both drugs, a reduction of the nifedipine dose should be considered when the treatment is discontinued.

Drugs decreasing nifedipine exposure:

-    rifampicin

-    phenytoin

-    carbamazepine

-    phenobarbital

Effects of nifedipine on other drugs:

Nifedipine may increase the blood pressure lowering effect of concomitant applied antihypertensives.

When nifedipine is administered simultaneously with beta-receptor blockers the patient should be carefully monitored since deterioration of heart failure is also known to develop in isolated cases.

Digoxin: The simultaneous administration of nifedipine and digoxin may lead to reduced digoxin clearance and, hence, an increase in the plasma digoxin level. The patient should therefore be subjected to precautionary checks for symptoms of digoxin overdosage and, if necessary, the glycoside dose should be reduced.

Quinidine: Co-administration of nifedipine with quinidine may lower plasma quinidine levels, and after discontinuation of nifedipine, a district increase in plasma quinidine levels may be observed in individual cases. Consequently, when nifedipine is either additionally administered or discontinued, monitoring of the quinidine plasma concentration, and if necessary, adjustment of the quinidine dose are recommended. Blood pressure should be carefully monitored and, if necessary, the dose of nifedipine should be decreased.

Tacrolimus: Tacrolimus is metabolized via the cytochrome P450 3A4 system. Published data indicate that the dose of tacrolimus administered simulataneously with nifedipine may be reduced in individual cases. Upon co-administration of both drugs, the tacrolimus plasma concentrations should be monitored and, if necessary, a reduction in the tacrolimus dose considered.

Drug food interactions

Grapefruit juice inhibits the cytochrome P450 3A4 system. Administration of nifedipine together with grapefruit juice thus results in elevated plasma concentrations and prolonged action of nifedipine due to a decreased first pass metabolism or reduced clearance. As a consequence, the blood pressure lowering effect of nifedipine may be increased. After regular intake of grapefruit juice, this effect may last for at least three days after the last ingestion of grapefruit juice. Ingestion of grapefruit/grapefruit juice is therefore to be avoided while taking nifedipine (see Section 4.2).

Other forms of interaction

Nifedipine may increase the spectrophotometric values of urinary vanillylmandelic acid falsely. However, HPLC measurements are unaffected.

4.6 Fertility, pregnancy and lactation

Tensipine MR is contra-indicated in pregnancy before week 20 (see Section 4.3.)

In animal studies, nifidepine has been shown to produce embryotoxicity, foetoxicity and teratogenicity (see Section 5.3 Preclinical safety data).

There are no adequate and well-controlled studies in pregnant women.

From the clinical evidence available a specific prenatal risk has not been identified, although an increase in perinatal asphyxia, caesarean delivery, as well as prematurity and intrauterine growth retardation have been reported. It is unclear whether these reports are due to the underlying hypertension, its treatment, or to a specific drug effect.

The available information is inadequate to rule out adverse drug effects on the unborn and newborn child. Therefore any use in pregnancy after week 20 requires a very careful individual risk benefit assessment and should only be considered if all other treatment options are either not indicated or have failed to be efficacious.

In single cases of in vitro fertilization calcium antagonists like nifedipine have been associated with reversible biochemical changes in the spermatozoa’s head section that may result in impaired sperm function. In those men who are repeatedly unsuccessful in fathering a child by in vitro fertilization, and where no other explanation can be found, calcium antagonists like nifedipine should be considered as possible cases.

Nifedipine passes into the breast milk. As there is no experience of possible effects on infants, breastfeeding should first be stopped if nifedipine treatment becomes necessary during the breastfeeding period.

4.7 Effects on ability to drive and use machines

Reactions to the drug, which vary in intensity from individual to individual, may impair the ability to drive or to operate machinery. This applies particularly at the start of treatment, on changing the medication and in combination with alcohol.

4.8 Undesirable effects

Ischaemic pain has been reported in a small proportion of patients within one to four hours of the introduction of Tensipine MR therapy. Although a "steal" effect has not been demonstrated, patients experiencing this effect should discontinue Tensipine MR.

Adverse drug reactions (ADRs) based on placebo-controlled studies with nifedipine sorted by CIOMS III categories of frequency (clinical trial data base: nifedipine n = 2,661; placebo n = 1,486; status: 22 Feb 2006 and the ACTION study: nifedipine n = 3,825; placebo n = 3,840) are listed below: ADRs listed under ‘common’ were observed with a frequency below 3% with the exception of oedema (9.9%) and headache (3.9%).

The frequencies of ADRs reported with nifedipine-containing products are summarized in the table below. Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness. Frequencies are defined as common (> 1/100 to <1/10), uncommon (> 1/1,000 to <1/100) and rare (>1/10,000 to <1/1,000). The ADRs identified only during the ongoing postmarketing surveillance, and for which a frequency could not be estimated, are listed under ‘Not Known’.

System Organ Class

(MedDRA)

Common

Uncommon

Rare

Not Known

Blood and Lymphatic System Disorders

Agranulocytosis

Leucopenia

Immune System Disorders

Allergic reaction Allergic oedema/ angioedema (inc. larynx oedema*)

Pruritus

Urticaria

Rash

Anaphylatic/

anaphylactoid

reaction

Psychiatric

Disorders

Anxiety

reactions

Sleep disorders

Metabolism and

Nutrition

Disorders

Hyperglycaemia

Nervous System Disorders

Headache

Vertigo

Migraine

Dizziness

Tremor

Par-

/Dysaesthesia

Hypoaesthesia

Somnolence

Eye Disorders

Visual

disturbances

Eye pain

Cardiac Disorders

Tachycardia

Palpitations

Chest pain (Angina Pectoris)

Vascular

Disorders

Oedema

Vasodilatation

Hypotension

Syncope

Respiratory, Thoracic, and Mediastinal Disorders

Nasal congestion Nosebleed

Dyspnoea

Gastrointestinal

Disorders

Constipation

Gastrointestinal

and abdominal

pain

Nausea

Dyspepsia

Flatulence

Dry mouth

Gingival

hyperplasis

Vomiting

Gastroesophageal

sphincter

insufficiency

Hepatobiliary

Disorders

Transient increase in liver enzymes

Jaundice

Skin and Subcutanenous Tissue Disorders

Erythema

Toxic Epidermal Necrolysis Photosensitivity allergic reaction Palpable purpurs

Musculoskeletal and Connective Tissue Disorders

Muscle cramps Joint swelling

Arthralgia

Myalgia

Renal and Urinary Disorders

Polyuria

Dysuria

Reproductive System and Breast Disorders

Erectile

dysfunction

General Disorders and

Administration Site Conditions

Feeling unwell

Unspecific pain Chills

* = may result in life-threatening outcome

In dialysis patients with malignant hypertension and hypovolaemia a distinct fall in blood pressure can occur as a result of vasodilation.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance

of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at: www.mhra.gov.uk/yellowcard

4.9 Overdose

Symptoms

The following symptoms are observed in cases of severe nifedipine intoxication:

Disturbances of consciousness to the point of coma, a drop in blood pressure, tachycardia, bradycardia, hyperglycaemia, metabolic acidosis, hypoxia, cardiogenic shock with pulmonary oedema.

Treatment

As far as treatment is concerned, elimination of nifedipine and the restoration of stable cardiovascular conditions have priority. Elimination must be as complete as possible, including the small intestine, to prevent the otherwise inevitable subsequent absorption of the active substance.

The benefit of gastric decontamination is uncertain.

Consider activated charcoal (50 g for adults, 1g/kg for children) if the patient presents within 1 hour of ingestion of a potentially toxic amount.

Although it may seem reasonable to assume that late administration of activated charcoal may be beneficial for sustained release (SR, MR) preparations there is no evidence to support this.

Alternatively consider gastric lavage in adults within 1 hour of a potentially life-threatening overdose.

Consider further doses of activated charcoal every 4 hours if a clinically significant amount of a sustained release preparation has been taken.

Asymptomatic patients should be observed for at least 4 hours after ingestion and for 12 hours if a sustained release preparation has been taken.

Haemodialysis serves no purpose as nifedipine is not dialyzable.

Hypotension as a result of cardiogenic shock and arterial vasodilatation can be treated with calcium (10 -20 ml of a 10% calcium gluconate solution administered intraveneously over 5-10 minutes). If the effects are inadequate, the treatment can be continued, with ECG monitoring. If an insufficient increase in blood pressure is achieved with calcium, vasoconstricting sympathomimetics such as dopamine or noradrenaline should be administered. The dosage of these drugs should be determined by the patient’s response.

Symptomatic bradycardia may be treated with atropine, beta-sympathomimetics or a temporary cardiac pacemaker, as required.

Additional fluids should be administered with caution to avoid cardiac overload.

5    PHARMACOLOGICAL PROPERTIES

5.1    Pharmacodynamic properties

ATC code: C08CA05

Nifedipine is a specific and potent calcium antagonist of the 1,4-dihydropyridine type. Calcium antagonists reduce the transmembranal influx of calcium ions through the slow calcium channel into the cell. Nifedipine acts particularly on the cells of myocardium and the smooth muscle cells of the coronary arteries and the peripheral resistance vessels.

In hypertension, the main action of Tensipine MR is to cause peripheral vasodilatation and thus reduce peripheral resistance.

In angina, Tensipine MR reduces peripheral and coronary vascular resistance, leading to an increase in coronary blood flow, cardiac output and stroke volume, whilst decreasing after-load.

Additionally, nifedipine dilates submaximally both clear and atherosclerotic coronary arteries, thus protecting the heart against coronary artery spasm and improving perfusion to the ischaemic myocardium.

Nifedipine reduces the frequency of painful attacks and the ischaemic ECG changes irrespective of the relative contribution from coronary artery spasm or atherosclerosis.

Tensipine MR administered twice-daily provides 24-hour control of raised blood pressure. Tensipine MR causes reduction in blood pressure such that the percentage lowering is directly related to its initial level. In normotensive individuals, Tensipine MR has little or no effect on blood pressure.

Paediatric population:

Limited information on comparison of nifedipine with other antihypertensives is available for both acute hypertension and long-term hypertension with different formulations in different dosages. Antihypertensive effects of nifedipine have been demonstrated but dose recommendations, long term safety and effect on cardiovascular outcome remain unestablished. Paediatric dosing forms are lacking.

5.2 Pharmacokinetic properties

Absorption

After oral administration nifedipine is rapidly and almost completely absorbed. The systematic availability of orally administered nifedipine is 45 - 56% owing to a first pass effect. Maximum plasma and serum concentrations are reached at 1.5 to 4.2 hours with

Tensipine MR (20mg tablets). Simultaneous food intake leads to delayed, but not reduced absorption.

Distribution

Nifedipine is about 95% bound to plasma protein (albumin). The distribution half-life after intraveneous administration was determined to be 5 to 6 minutes.

Biotransformation

After oral administration nifedipine is metabolized in the gut wall and in the liver, primarily by oxidative processes. These metabolites show no pharmacodynamic activity. Nifedipine is excreted in the form of its metabolites predominantly via the kidneys and about 5 - 15% via the bile in the faeces. The unchanged substance is recovered only in traces (below 0.1%) in the urine.

Elimination

The terminal elimination half-life is 6 - 11 hours (Tensipine MR), because of delayed absorption. No accumulation of the substance after the usual dose was reported during long-term treatment. In cases of impaired kidney function no substantial changes have been detected in comparison with healthy volunteers. In cases of impaired liver function the elimination half-life is distinctly prolonged and the total clearance is reduced. A dose reduction may be necessary in severe cases.

5.3 Preclinical safety data

Preclinical data reveal no special hazard for humans based on conventional studies of single and repeated dose toxicity, genotoxicity and carcinogenic potential.

Reproduction toxicology

Nifedipine has been shown to produce teratogenic findings in rats, mice and rabbits, including digital anomalies, malformation of the extremities, cleft palates, cleft sternum and malformation of the ribs. Digital anomalies and malformation of the extremities are possibly as a result of compromised uterine blood flow, but have also been observed in animals treated with nifedipine solely after the end of the organogenesis period.

Nifedipine administration has been associated with a variety of embryotoxic, placentotoxic and fetotoxic effects, including stunted fetuses (rats, mice and rabbits), small placentas and underdeveloped chorionic villi (monkeys), embryonic and foetal deaths (rats, mice, rabbits) and prolonged pregnancy/decreased neonatal survival (rats; not evaluated in other species). The risk to humans cannot be ruled out if a significantly high systematic exposure is achieved, however, all of the doses associated with the teratogenic, embryotoxic or fetotoxic effects in animals were maternally toxic and several times the recommended maximum dose for humans (see Section 4.6)

6.    PHARMACEUTICAL PARTICULARS

6.1.    List of Excipients

Tensipine MR tablets contain the following excipients:

Microcrystalline cellulose, maize starch, lactose, polysorbate 80, magnesium stearate, hydroxypropyl methylcellulose, polyethylene glycol 4000, iron oxide red and titanium dioxide.

6.2.    Incompatibilities

Not applicable.

6.3.    Shelf-Life

PVC blister strips: 48 months PP blister strips: 30 months

6.4.    Special Precautions for Storage

The tablets should be protected from strong light and stored in the manufacturer’s original container.

6.5.    Nature and Contents of Container

Tensipine MR 10 tablets: blister strips of 14 tablets in a cardboard outer container, packs of 56 tablets.

Blister strips are composed of red polypropylene foil (0.3mm) with aluminium backing foil (0.02mm) or red PVC foil (0.3mm) with aluminium backing foil (0.02mm).

6.6.    Instructions for Use, Handling and Disposal

No additional information.

MARKETING AUTHORISATION HOLDER

7


Genus Pharmaceuticals Limited T/A Genus Pharmaceuticals Linthwaite,

Huddersfield,

HD7 5QH, UK

8. MARKETING AUTHORISATION NUMBER(S)

PL 6831/0048

9    DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

19/02/2009

10    DATE OF REVISION OF THE TEXT

11/11/2014